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In this article we present a high-order-accurate solver for the radiative transfer equation

(RTE) which uses the discontinuous Galerkin (DG) method and is designed for graphics

processing units (GPUs). The compact nature of the high-order DG method enhances scal-

ability, particularly on GPUs. High-order spatial accuracy can be used to reduce discretiza-

tion errors on a given computational mesh, and can also reduce the mesh size needed to

achieve a desired error tolerance. Computational efficiency is a key concern in solutions

to radiative heat transfer problems, due to potentially large problem sizes created by (a)

the presence of participating nongray media in a full-spectrum analysis, (b) the need to

resolve a large number of angular directions and spatial extent of the domain for an accu-

rate solution, and (c) potentially large variations in material and flow properties in the

domain. We present here a simulation strategy, as well as a set of physical models,

accompanied by a number of case studies, demonstrating the accuracy and superior

performance in terms of computational efficiency of this approach.

1. INTRODUCTION

Thermal radiation is a dominant mode of heat transfer in combustion systems
such as rocket engines, scramjets, and industrial furnaces [1–3]. It must be properly
accounted for in preliminary and detailed design phases of systems development to
result in a robust and fail-safe design. Hydrocarbon combustion results in exhaust
gases which are dominantly composed of water vapor and carbon dioxide, both of
which significantly participate in absorbing and emitting thermal radiation [4]. For

Received 9 November 2012; accepted 5 February 2013.

This work was supported by the United States Air Force under AFOSR STTR project grant #

F08A-T020–0170. The authors would like to thank Prof. Michael M. Modest from University of Califor-

nia, Merced, for his review of an earlier version of this manuscript. Thanks are also due to Dr. Zhining Liu

of HyPerComp, Inc., who carried out the CFD simulations of the Atlas II rocket plume. The authors

thank Prof. A. R. Karagozian for useful discussion and exchange of information.

Address correspondence to Laurent Pilon, Mechanical and Aerospace Engineering Department,

Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, 420

Westwood Plaza, Los Angeles, CA 90095, USA. E-mail: pilon@seas.ucla.edu

Numerical Heat Transfer, Part B, 63: 457–484, 2013

Copyright # Taylor & Francis Group, LLC

ISSN: 1040-7790 print=1521-0626 online

DOI: 10.1080/10407790.2013.778669

457

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 L

os
 A

ng
el

es
 (

U
C

L
A

)]
 a

t 1
3:

53
 0

2 
M

ay
 2

01
3 



designing the rocket nozzle heat shield, quantities such as radiation heat load on the
sidewalls, and, more importantly on the nozzle lip which directly faces the exhaust
plume, are critical quantities which must be properly estimated [5]. Besides heating,
accurate modeling of the thermal radiation emitted by the exhaust plume of a rocket
or missile is of utmost importance for military applications for the design of
low-observable vehicles and remote sensing [6].

Empirical correlations used in conjunction with experimental data have been
used in the past for the design of such systems [4]. However, increasing complexity
and cost has prompted the development of modeling and numerical simulation tools
to better understand and designmodern combustion systems. Numerical simulation of
combustion systems is computationally complex since it involves multiphysics interac-
tions, such as two-phase flow, turbulent mixing, fuel atomization and vaporization,
radiative and convective heat transfer, and chemical reaction kinetics [1]. Further-
more, coupling radiative effects in such systems entails the computational burden of
addressing multiscale physical phenomena. Flow, turbulence, combustion, scattering
from particles, property gradients (with associated variations in optical thickness), and
the propagation of radiation over long distances represent some multiscale aspects of
the problem. Since the temperature field impacts combustion chemistry, resolution of
temporal scales (of the order of microseconds or less) also adds to the computational

NOMENCLATURE

A area, m2

C cross section, m2=mole

E emissive power, W=m2

F blackbody distribution function,

Eq. (3)

g asymmetric factor

gi cumulative distribution function of

absorption Eq. (8)

G fluence rate, W=m2

H height, m

I radiation intensity, W=m2 sr

Ib blackbody radiation intensity,

W=m2 sr

k absorption coefficient variable, m�1

l test function in DG method

L thickness, m

N number of grid elements

Np number of interpolation nodes inside

a grid element

P pressure, Pa

q heat flux, W=m2

r position vector, m

R radius, m

s path length, m

T temperature, K

V volume, m3

x, y, z cartesian coordinates, m

Y molar fraction

b extinction coefficient, m�1

E emmisivity

h, / spherical coordinate

j absorption coefficient, m�1

r Stefan-Boltzmann constant,

W=m2 K4

rs scattering coefficient, m�1

s optical thickness

U scattering phase function

x scattering albedo

X solid angle, sr

Subscripts

abs absorption

b blackbody emission

ext external

g gas properties

int internal

i, j absorption coefficient indices

n, m grid element indices

p order of DG method

w wall

n wavenumber

Superscripts

þ, � adjacent and current grid elements
� dimensionless
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complexity. Despite various advancements in numerical methods and computational
hardware in recent times, the development of effective physical models and innovative
numerical methods remains an important concern. This is particularly important
when repeated coupled solutions of flow and radiation are desired in a time-evolving
calculation, for e.g., in turbulent combustion and plasma dynamics.

General-purpose graphics processing units (GPGPUs) have been gaining
increasing popularity in the high-performance computing community due to their
enormous memory bandwidth and floating-point-operation capacity. It has also
been demonstrated that computational solvers employing high-order schemes are
able to exploit the full potential of GPGPUs [7].

This study presents a fast, robust, and accurate radiative transfer equation
(RTE) solver implemented on a GPGPU based on a high-order discontinuous Galer-
kin method. It could find numerous applications in military and aerospace applica-
tions related to thermal analysis of combustion and propulsion systems and to target
detection and identification (remote sensing) [2]. It could also be used in the analysis
of exhaust gases in stationary power plants [8], radiative analysis of furnaces to mini-
mize energy loss and pollution emissions [9], and even in simulation of light transfer
in photobioreactors [10].

2. CURRENT STATE OF KNOWLEDGE

2.1. Radiative Transfer Equation

The radiative transfer equation describes the rate of change of the spectral radi-
ation intensity along a line of sight in a participating medium. The gradient of inten-
sity In in a unit solid angle of dX (in sr) about the direction ŝs within a spectral range
dn about n (in cm�1) can be expressed as [2]

ŝs � rInðr; ŝsÞ ¼ jnðrÞIbnðr; ŝsÞ � jnðrÞInðr; ŝsÞ � rsnðrÞInðr; ŝsÞ

þ rsnðrÞ
4p

Z
4p
Inðr; ŝsÞUnðŝsi; ŝsÞ dXi

ð1Þ

where jn (in cm�1) is the spectral absorption coefficient, rsn (in cm�1) is the spectral
scattering coefficient, In is the radiation intensity expressed in W=m2 � sr � cm, Ibn is
the blackbody radiation intensity given by Planck’s law. The scattering phase func-
tion Unðŝsi; ŝsÞ represents the probability that radiation propagating in the solid angle
dXi direction around ŝsi be scattered into the solid angle dX around the direction ŝs. In
addition, bn(¼rsnþ jn) is the spectral extinction coefficient, while the single scatter-
ing albedo is defined as xn¼rsn=(rsnþ jn).

Spectrally and angularly integrated radiative quantities of interest in thermal
science and in multiphysics problems include the total fluence rate G(r), the total
radiative heat flux q(r), and its divergence r�q(r), respectively defined as [3]

GðrÞ ¼
Z
4p

Z 1

0

Inðr; ŝsÞ dn dX; qðrÞ ¼
Z
4p

Z 1

0

ŝsInðr; ŝsÞ dn dX

and r � qðrÞ ¼
Z
4p

Z 1

0

jnðrÞ IbnðrÞ � Inðr; ŝsÞ½ � dn dX
ð2Þ
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2.2. Gas Radiation Model

The absorption coefficients of molecular gases vary significantly as function of
temperature, pressure, and wavenumber [2]. This makes radiative transfer calcula-
tions in participating gases extremely difficult to carry out. Therefore, gas radiation
models have been developed to determine the absorption coefficient jn as a function
of gas mixture composition, temperature, and pressure. Water vapor and carbon
dioxide are of special importance in combustion of hydrocarbon fuels [2] and also
dominate atmospheric radiation [11].

2.2.1. Spectral line–based weighted sum of gray gases (SLW). Denison
and Webb [12–15] developed the spectral line–based weighted-sum-of-gray-gases
(SLW) model. This model transforms spectral integration in Eq. (2) into a sum-
mation of a group of fictitious gray gases with specified absorption cross-
section Cabs and weight aj. For a medium with a participating gas of a specified uni-
form temperature Tg, molar fraction Yi, and total pressure of gas mixture PT, the
mixture’s absorption coefficient or the absorption cross-section can be determined
as a function of wavenumber. The blackbody distribution function represents the
fraction of blackbody emissive power at a particular temperature Tb for wavenumber
such that the cross-section C0

absðTg;Yi;PTÞ is less than a specific value Cabs(Tg, Yi,
PT). Mathematically, it can be represented as [14]

FðTg;Tb;Cabs;Yi;PTÞ ¼
1

rT4
b

Z
n;C0

abs<Cabs

Ebnðn;TbÞ dn ð3Þ

where r(¼ 5.67� 10�8W=m2K4) is the Stefan-Boltzmann constant. The weight of
blackbody emissive power pertaining to the jth fictitious gray-gas component is
defined as [14]

aj ¼ FðTg;Tb;Cabs; j þ 1;Yi;PTÞ � FðTg;Tb;Cabs; j;Yi;PTÞ j ¼ 1; . . . ;NCabs
ð4Þ

where NCabs
is the total number of the fictitious gray-gas components. Assuming the

medium is nonscattering, the RTE along the kth direction ŝsk becomes

ŝsk � rI j;k ¼ jjðI�b;j � I j;kÞ with j ¼ 1; . . . ;NCabs
and k ¼ 1; . . . ;Nd ð5Þ

where I�b;j ¼ ajIb;j, Nd is total number of the angular directions, and jj is the absorp-
tion coefficient of the jth fictitious gray gas. Denison and Webb have constructed
blackbody distribution functions from the HITRAN database [16] for water vapor
[13] and carbon dioxide [14]. They also formulated the mathematical correlations
between absorption line and distribution function for convenient computer code
implementation. Treatments of nonisothermal and nonhomogeneous media were
discussed in [15] by scaling approximation, with the help of reference temperature
and the reference gas component fractions. Extension to multicomponent gas
mixtures was realized by the multiplication approach described in [14, 17].
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2.3. Hybrid SNBCK Model

The hybrid statistical narrow-band correlated-k (SNBCK) model was proposed
by Lacis and Oinas [18]. It was described in detail by Goutière et al. [19]. For the
narrow-band gas model, the spectral domain is first divided into a series of narrow
bands (of the order of 10–100 cm�1). The band width of the ith narrow band is Dni,
and the RTE for an absorbing, emitting, and nonscattering medium can be written as

ŝs � rI i ¼ jiðIb;i � I iÞ ð6Þ

where I i ¼ I i ð̂ss; rÞ and ji are the radiative intensity and absorption coefficient of the
ith narrow band, respectively. Note that ji may still vary widely in this small spectral
window, whereas the blackbody intensity Ib, i is a smooth function in terms of spectral
variable, which can be safely assumed to be constant inside Dni around ni. Integration
of Eq. (6) over the spectral region Dni yieldsZ

Dni
ŝs � rI i dn ¼

Z
Dni

jiðIb;i � I iÞ dn ð7Þ

A cumulative distribution function of absorption, gi(k), is introduced to
represent the fraction in the spectral domain with absorption coefficient less than
a specific value and is defined as

giðkÞ ¼
Z k

0

f iðk0Þ dk0 ð8Þ

where fi(k
0) is the k-distribution function for the absorption coefficient in the spectral

interval Dni. The function gi(k) is smooth and varies within [0, 1]. Then, Eq. (7) can
be written as

Dni

Z 1

0

ŝs � rI i dgi ¼ Dni

Z 1

0

jiðIb;i � I iÞ dgi ð9Þ

Since the cumulative function is a smooth function, we can transform the inte-
gration into a quadrature summation, e.g., Gauss quadrature, with Nq quadrature
angles. Then, Eq. (9) becomes

Dni
XNq

j¼1

wj ŝs � rI i;j
� �

¼ Dni
XNq

j¼1

wjji;j Ib;i � I i;j
� �

ð10Þ

where ji, j is the absorption coefficient at the jth quadrature in the ith narrow band
and wj is the weight of the jth Gauss quadrature.

Assuming that the quadrature directions are decoupled, then for each direction
one can write [19]

ŝs � rI i;j ¼ ji;jðIb;i � I i;jÞ j ¼ 1; 2; . . . ;Nq ð11Þ

In the SNBCK model, for example, we have 44 narrow bands (i¼ 1,. . ., 44), with 7
Gauss quadrature points (j¼ 1,. . ., 7) in each band. Databases of ji, j for water vapor
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and carbon dioxide in the temperature range 300–2,500 K and pressure of 1 atm were
tabulated by Soufiani and Taine [20].

2.4. Discontinuous Galerkin Method for Solving the RTE

The discontinuous Galerkin (DG) method was first used by Reed and Hill [21]
to solve the neutron transport equation. It has been applied in recent years to a large
number of problems in computational physics—see, e.g., Hesthaven and Warburton
[22] for an exposition of the method. In the DG method the solution is expressed in
terms of basis functions which are local to each element and can be discontinuous at
element boundaries—as opposed to the traditional finite-element method, where
interelement continuity of the basis is required. Lagrange polynomials are commonly
used as the basis and test functions in the DG method [22]. A DG method of order n
is referred to as Pn. In our work, we use the nth-order Lagrange polynomials as basis.
High-order accuracy can be achieved by increasing n.

The DG method provides enormous numerical flexibility and is distinguished
by the following features: (1) It is elementwise conservative [23]; (2) it can provide
arbitrarily high-order accuracy and polynomials [23]; (3) adaptive variants of the
scheme can be developed, where n and mesh resolution may be refined locally [24,
25]; (4) the method can be applied to general mesh topologies [26]; and (5) it is well
suited for parallel computing using graphics processing units (GPUs). This last pro-
perty results from the observation that the high-order DG uses dense local operators,
an aspect that is further explained in [7].

Cui and Li [23] employed the P-1 DG method for solving the RTE in an emit-
ting, absorbing, and anisotropically scattering gray medium. The authors solved the
2-D and 3-D RTE in square, quadrilateral, and cubic geometries with unstructured
triangle and tetrahedral elements. The walls were cold and black. They compared the
wall heat flux obtained using the DG method with that obtained by ray-tracing and
Monte Carlo methods and found excellent agreement. Moreover, Cui and Li [27]
used the P-1 DG method for solving the 2-D RTE in an emitting, absorbing, and
anisotropically scattering gray medium with axisymmetric geometries. The authors
found good agreement between the heat flux obtained using the DG method and that
predicted by the discrete-ordinates method and the finite-volume method.

Zhao and Liu [26] developed the discontinuous spectral-element method com-
bining the different orders (P-1 to P-14) of the DG method with the spectral-element
method [28] to solve the 2-D RTE. In the spectral-element method, orthogonal poly-
nomials such as Chebyshev and Legendre polynomials were used as the interpolation
functions of a numerical solution to achieve high-order accuracy [26]. The authors
calculated the radiative heat flux for an emitting, absorbing, and anisotropically scat-
tering gray medium within a 2-D square enclosure with black walls. They found that
the maximum relative error in the radiative heat flux between the discontinuous
spectral-element method and the discrete-ordinates method was less than 0.8%.

Recently, Balima et al. [29] solved the 2-D RTE in a nonemitting, absorbing,
isotropically scattering and gray medium using two finite-element formulations with
the discrete-ordinates method. The authors compared the wall heat flux obtained by
the least-square finite-element method and the P-1 DG method. They considered
collimated incident radiation and evaluated the accuracy of two different angular
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quadrature sets, namely, SN and TN. They concluded that the DG method with TN

angular quadrature gave more accurate solutions than the least-square finite-element
method with SN angular quadrature. Balima et al. [30] also employed the P-1 DG
method for solving the 2-D RTE in the frequency domain for optical tomography.
The medium was gray, nonemitting, absorbing, and anisotropically scattering. The
authors also considered collimated incident radiation and used a gradient-based
algorithm to retrieve the optical properties of the medium. They concluded that
the DG method achieved good reconstruction of the optical properties distribution
and was well suited for optical tomography.

2.5. Graphics Processing Units

The graphics processing unit is a highly parallel, multithreaded, and many-core
processor (hundreds of cores) with enormous computing power. Its low cost, high
floating-point-operation throughput, and memory access bandwidth have been
attracting more and more researchers in the field of high-performance computing
[7, 31–34]. In addition, compared with cluster systems that consist of many CPUs,
GPU computing is low-cost and requires low energy at equivalent performance.
Across many disciplines of science and engineering, users have been able to increase
performance by several orders of magnitude using GPUs [35].

In the computational fluid dynamics (CFD) community, structured-grid Euler
solvers for compressible flows on GPU were implemented by Elsen et al. [32]. Typi-
cally, one order of magnitude speed-up was achieved by using a single GPU card com-
pared with a single-node CPU implementation. Philips et al. [34] implemented a
parallel 2-D structured-grid Euler solver and used a GPU cluster consisting of 8
GPU cards, each having 128 cores. They achieved a speed-up of 160 compared with
a single CPU implementation. It is worth mentioning that a recent study by Klöckner
et al. [7] achieved a 40-times speed-up when solving Maxwell’s equation solver with
GPUs using the discontinuous Galerkin method and general unstructured 3-D grids.

In previous studies solving the RTE using the DG method, the medium was
treated as gray and the walls as black. In this article, we significantly expand the
scope of the prospective applications of the DG-based RTE solver by considering
higher-order methods and by including the effects of nongray media and generalized
boundary conditions, as well as by porting the method to GPU computing. In fact,
high-order discontinuous Galerkin (DG) methods were used to solve the 3-D RTE
on a spectral basis using the gas radiation models SLW and hybrid SNBCK. Diffuse
and collimated incident radiation was considered. Black and diffusely or specularly
reflecting walls were also used as boundary conditions to analyze various radiative
transfer problems. Finally, the RTE solver was coupled with a CFD solver to simu-
late radiation transfer in Atlas II rocket plumes. The computational efficiencies of
the parallel GPU and CPU were examined for integrating RTE and CFD solvers.

3. ANALYSIS

3.1. Mathematical Details

Efficiently solving the radiative transfer equation in a single direction, even
without scattering term, is of critical importance for the overall performance of
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the RTE solver. For a given direction, the RTE in absorbing, emitting, but nonscat-
tering media takes the following form:

ŝs � rIn ¼ �jnIn þ jnIbn ð12Þ

Under the DG framework [22], multiplying Eq. (12) with a test function lnm and per-
forming volume integration for the nth grid element of volume Vn and surface area
An yields

Z
Vn

lnmŝs � rIn dV þ
Z
Vn

lnmjI
n dV ¼

Z
Vn

lnmjIb dV ð13Þ

where the superscript n2f1,. . ., Ng is used to indicate that the integration operation
is carried out locally on the nth grid element, out of a total of N grid elements, and lnm
is the mth test function for the nth grid element m2f1,. . ., Npg where Np is the
number of interpolation nodes. For the sake of simplicity, the spectral subscript n
was dropped, but it is understood that the radiative intensity and the radiation char-
acteristics presented in all formulations of this sections are wavelength-dependent.
The weak formulation is obtained by applying the Gauss (or divergence) theorem
on the first term on the left-hand side (LHS) of Eq. (13) and is given by

Z
An
lnmŝsI

� � dA�
Z
Vn

rlnm � ŝsIn dV þ
Z
Vn

lnmjI
n dV ¼

Z
Vn

lnmjIb dV ð14Þ

where I� is the numerical radiative intensity to be specified along the boundary of the
element. Applying the Gauss theorem again on the second term on the LHS of
Eq. (14) yields the strong formulation, expressed as

Z
Vn

lnmŝs � rIn dV þ
Z
Vn

lnmjI
n dV þ

Z
An
lnmðŝsI� � ŝsI�Þ � dA ¼

Z
Vn

lnmjIb dV ð15Þ

The derivation of the weak and strong formulations as well as the introduction of
numerical flux through the element boundary is a standard procedure in the DG
framework, as detailed in [22]. The numerical radiative heat flux through the grid
element boundary ŝsI� is a function of radiative intensity along both sides of the
boundary. The upwind scheme was employed for numerical flux construction so that

ŝsI� ¼ ŝsIþ if ŝs � A < 0
ŝsI� if ŝs � A > 0

�
ð16Þ

where A is the outward normal vector to the grid element surface area. The minus
superscript (�) refers to variables obtained from the grid element under consider-
ation, while the positive superscript (þ) is used for variables from adjacent grid
elements. Therefore, the third term on the LHS of Eq. (15) can be written as

Z
An
lnmðŝsI� � ŝsI�Þ dA ¼ 1

2

Z
An
lnm½1� signðŝs � dAÞ�ðIþ � I�Þŝs dA ð17Þ
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where the sign function sign(x) is the sign of scalar x. Substituting Eq. (17) into
Eq. (15) yields

Z
Vn

lnmŝs � rIn dV þ
Z
Vn

lnmjI
n dV

þ 1

2

Z
An
lnm½1� signðŝs � dAÞ�ðIþ � I�Þŝs dA ¼

Z
Vn

lnmjIb dV
ð18Þ

As previously noted, m2f1,. . ., Npg and there are Np relations for the nth grid
element. Introducing the vector Ln ¼ ½ln1; l

n
2; . . . ; l

n
Np
�T and combining Eq. (15)–(18)

yields

Z
Vn

Lnŝs � rIn dV þ
Z
Vn

LnjIn dV

þ 1

2

Z
An
Ln½1� signðŝs � dAÞ�ðIþ � I�Þŝs dA ¼

Z
Vn

LnjIb dV
ð19Þ

Here, the mass matrix Mn can be defined as the matrix of weights used to integrate
polynomials whose elements Mn

mp for the nth grid element are expressed as functions
of Lagrange polynomials

Mn
mp ¼

Z
Vn

lnml
n
p dV ð20Þ

The inverse of this mass matrix can be applied to Eq. (19) to yield

ðMnÞ�1

Z
Vn

Lnŝs � rIn dV þ ðMnÞ�1

Z
Vn

LnjIn dV

þ 1

2
ðMnÞ�1

Z
An
Ln½1� signðŝs � dAÞ�ðIþ � I�Þŝs dA ¼ ðMnÞ�1

Z
Vn

LnjIb dV
ð21Þ

The task of the RTE solver is to find In ¼
PNp

m¼1

lnmI
n
m satisfying Eq. (21), upon which

N�Np algebraic equations can be constructed. With these algebraic equations, in
theory, the solution of the RTE of a particular direction can be found by inverting
an (N�Np)� (N�Np) matrix. In our RTE solver, the matrix inversion was achieved
using an iterative method [36].

The third term on the LHS of Eq. (21) is separated into internal and external
boundary surfaces, since it might involve contribution from domain boundaries
which need to be treated as a source term, i.e.,

Z
An

¼
Z
An

int

þ
Z
An

ext

ð22Þ
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We further separate the external boundary surface integration into

1

2
ðMnÞ�1

Z
An

bndy

Ln½1� signðŝs dAÞ�ðIþ � I�Þŝs dA

¼ 1

2
ðMnÞ�1

Z
An

bndy

Ln½1� signðŝs dAÞ�ð0� I�Þŝs dA

þ 1

2
ðMnÞ�1

Z
An

bndy

Ln½1� signðŝs dAÞ�ðIþ � 0Þŝs dA

ð23Þ

Then, we shift the second part to the RHS of Eq. (21) and treat it as a source term. If
scattering and=or reflecting and emissive walls are present, radiative intensities of
different direction affect each other and therefore coupling of each direction is required.
In the RTE solver, their contribution was treated as a source term using the most
recently available intensity solutions, and numerical convergence was examined.

3.2. Matrix-Free Formulation

The matrix construction was found to consume a significant amount of com-
putational resource and time. It was also difficult to implement it efficiently with
GPGPUs. The solution adopted in this study consists of writing the algebraic rela-
tions of Eq. (21) for each wavenumber into the classic form

Mx ¼ b ð24Þ

where M is a (N�Np)� (N�Np) matrix, x ¼ Inm
� �

1�n�N;1�m�Np

h iT
is the radiative

intensity vector to be solved, and b corresponds to contribution from blackbody
emission, i.e., the RHS term of Eq. (21) and in-scattering if applicable. Both x

and b are vectors of size N�Np. Krylov subspace iteration methods do not require
one to build the matrix M explicitly [37]. The ultimate goal of constructing a matrix
is for the matrix-vector product computation in Krylov subspace iteration algo-
rithms. By correlating Eq. (21) and Eq. (24), the matrix-vector product operation
is identical to Eq. (21)’s LHS. This matrix-vector product can be evaluated using
a traditional function in the computation framework of the DG method. With an
additional vector-vector product function, we were able to implement a matrix-free
RTE solver using the bi-conjugate gradient stabilized (Bi-CGSTAB) method
described in [36]. Based on our computational studies of a variety of radiative
problems and grids, the Bi-CGSTAB method with preconditioner was always able
to satisfactorily produce converged solutions for matrix inversions.

3.3. Preconditioner

The preconditioner is of equal importance for the iterative method in matrix
inversion. The condition number of matrix involved in the RTE solver increases sig-
nificantly with DG order and grid refinements. Figure 1 shows the nonzero elements
of the matrix (represented by aþ sign) for a problem of N¼ 86 tetrahedron elements
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with P-3 DG method (Np¼ 20). A block diagonal pattern is clearly distinguishable.
Then, Eq. (21) can be rewritten as

ðMnÞ�1

Z
Vn

Lnŝs � rIn dV þ ðMnÞ�1

Z
Vn

LnjIn dV

� 1

2
ðMnÞ�1

Z
An
Ln½1� signðŝs � dAÞ�I�ŝs dA

þ 1

2
ðMnÞ�1

Z
An
Ln½1� signðŝs � dAÞ�Iþŝs dA

¼ ðMnÞ�1

Z
Vn

LnjIb dV

ð25Þ

Figure 1. Nonzero elements for the (N�Np)� (N�Np) matrix of a radiative transfer problem with P-3

DG scheme (Np¼ 20). The grid mesh consists of N¼ 86 tetrahedron elements. (a) Full matrix. (b) Close-up

view of the matrix.
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The first three terms on the LHS of Eq. (25) contribute to the diagonal block,
while the fourth term contributes to off-diagonal-block elements and the source
terms [Eq. (23)] for the internal and external boundaries, respectively. Then, a block
Jacobi preconditioner is the natural choice [38]. It depends on direction and the gas
absorption coefficient in the second term of Eq. (25). Since most radiation transfer
problems are convection-dominated, we neglected the second term, constructed a
gas radiation model independent of preconditioner, and called it the partial block
Jacobi preconditioner.

Finally, the computational kernels for the GPU were implemented using
OpenCL [39], which provides portability across multiple computing platforms. To
efficiently exploit the GPU’s enormous capability of floating-point operations, com-
putational tasks should be parallelizable. Most of the computation operators in the
DG framework are carried out in an element-local manner. Therefore the RTE sol-
ver based on the GPU method is well suited for GPU computing [7]. For the GPU
kernels of the RTE solver, we typically employed a thread block to carry out
element-wise calculations, whereas the threads within the same block cooperate
efficiently via shared memory. In the GPU computation mode, the entire solution
process was performed on the GPU, with the exception of initialization (e.g.,
problem setup and grid reading and partitioning) and communication of fields on
processor boundaries, which were performed by the CPU.

4. RESULTS AND DISCUSSION

The RTE solver developed in this study was implemented as a 3-D solver
employing tetrahedron elements. It can also be employed to investigate 2-D or
1-D radiative problems which are frequently encountered in the literature [2]. To
simulate 2-D problems (in the x–y plane), a 3-D mesh with one cell in the z direction
was generated and the two x–y planes were set to be specularly reflecting. It is evi-
dent that a specularly reflecting boundary results in direction coupling and increases
computational needs=requirements. To diminish the coupling effect, we used a grid
of tall cells with an aspect ratio of 50 in the z direction, which was realized by scaling
up a homogeneous grid in the z direction. Based on our experience, 3 to 5 iterations
were sufficient to ensure the convergence of direction coupling using tall cells.

4.1. 3-D Radiative Transfer in Nongray, Emitting, Absorbing, and
Nonscattering Media with Black Boundaries Exposed to
Diffuse Irradiation

Let us consider a parallelepiped enclosure with the dimension of [�1.0m,
1.0m]� [�1.0m, 1.0m]� [0.0m, 4.0m] in the x, y, and z directions, respectively.
All six of the enclosure’s side walls were black at 300 K. Temperature along the
enclosure centerline (x¼ 0, y¼ 0, z) was prescribed as

Tcð0;0;zÞ¼
Tiþð1;800�TiÞz=0:375 for 0�z�0:375m
1;800þðTe�1;800:0Þðz�0:375Þ=ð4:0�0:375Þ for z>0:375m

�

ð26Þ
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where Ti¼ 400K and Te¼ 800K. The gas temperature was symmetric about the
centerline with

TðrÞ ¼ ðTc � TeÞf ðr=RÞ þ Te with f ðr=RÞ ¼ 1� 3ðr=RÞ2 þ 2ðr=RÞ3 ð27Þ

Figure 2. Comparison of simulated (a) radiative heat flux along the centerline of a sidewall (x¼�1.0,

y¼ 0, z) and (b) divergence of radiative heat flux along the centerline (x¼ 0, y¼ 0, z) for a 3-D rectangular

enclosure containing absorbing, emitting, and nonscattering gas mixture at a specified temperature [Eq.

(26)] with SNBCK gas model and different DG orders (P-1, P-2, and P-5), grid size (Dx¼Dy¼Dz),
and angular quadratures (S8 and T4) with results reported in [40] (color figure available online).
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance from the centerline and R¼ 1.0m. The gas mix-

ture consisted on CO2 and water vapor in N2 with uniform mole fractions of 0.1, 0.2,
and 0.7, respectively. We performed simulations using (1) uniform grid resolutions
Dx¼Dy¼Dz¼ 0.2m corresponding to 10� 10� 20 cells, (2) three different DG
orders (P-1, P-2, or P-5), and (3) two different angular quadrature sets (S8 or T4).
Figure 2 shows the computed wall heat flux along the centerline of a side wall
(x¼�1.0 m, y¼ 0, z), with different simulation settings and the distribution of diver-
gence of radiative heat flux along the centerline of the enclosure (x¼ 0, y¼ 0, z). The
predictions were compared with the results reported in [40], obtained using T4 angu-
lar discretization and finite-volume spatial discretization with 17� 17� 24 rectangu-
lar cells in the x, y, and z directions. The average and maximum relative errors
between our numerical results for the radiative heat flux along (�1, 0, z) and those
reported in [40] were 5% and 12%, respectively. In addition, the average and
maximum relative errors between our numerical results for the divergence of radiat-
ive heat flux along (0, 0, z) and those reported in [40] were 12% and 19%, respect-
ively. Our predictions using different combinations of DG orders, grid resolutions,
and angular quadrature types all agree well with those reported in [40].

This study demonstrates that in order to achieve accurate simulation results
using the RTE solver, one can choose to employ coarse-grid resolution and higher
order of DG scheme or fine-grid resolution and lower order of DG scheme. Based
on our testing, the combination of higher-order DG scheme and coarser grid is pref-
erable in terms of accuracy and computational time for problem with smooth solu-
tions. However, finer grid resolution is required for areas with sharp discontinuities
in the solution.

4.2. 1-D Radiative Transfer in Gray, Emitting, Absorbing, and
Nonscattering Media with Reflecting Boundaries Exposed to
Diffuse Irradiation

All previous studies using the DG method to solve the RTE considered black
walls [23, 26, 29]. This section discusses the validity of our RTE solver for problems
involving nonblack diffusive walls and diffusely emitting and reflecting boundaries.
The incoming radiative intensity from nonblack diffusive walls is determined by the
reflected outgoing intensity and the blackbody intensity. Here, we used the bench-
mark problem solved analytically in [41]. It consists of a 1-D gas layer of thickness
L sandwiched between two walls at temperature Tw¼ 500K with emissivity E¼ 0.5.
The gas was treated as gray, emitting, absorbing, and nonscattering, with optical
thickness sL¼ jL equal to 0.1, 1.0, and 10. The gas temperature was uniform and
equal to Tg¼ 1,500K. The walls were gray and diffusively emitting and reflecting.
Figure 3 compares our numerical predictions with the exact solution [41] for
the divergence of the dimensionless radiative heat flux as a function of x=L defined
as [41]

dq�

ds
¼ dq=ds

rðT4
w � T4

gÞ
ð28Þ
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The numerical results were obtained using the P-6 DG method and S8 angular
discretization with a grid consisting of 125 tetrahedron elements. They fell within 2%
of the exact solution [41] for all optical thicknesses considered. These results demon-
strate that the DG method can accurately simulate diffusely emitting and reflecting
boundaries.

4.3. 2-D Radiative Transfer in Gray and Purely Scattering Media with
Black Boundaries Exposed to Diffuse Irradiation

This section explores the performance of the DG method to deal with different
scattering phase functions. Kim and Lee [42] considered a 2-D 1m� 1m square
enclosure filled with a scattering medium and 5 different scattering phase functions,
namely, (1) isotropic, (2) two forward with Henyey-Greenstein asymmetric factor

Figure 3. Comparison of divergence of dimensionless radiative heat flux [Eq. (2)] between DG method

solution and the exact solution [41] for 1-D absorbing and emitting gray gas at Tg¼ 1,500K with gray dif-

fusely reflecting and emitting walls at Tw¼ 500K with E¼ 0.5. The medium optical thickness as were

(a) sL¼ 0.1, (b) sL¼ 1.0, and (c) sL¼ 10.0.
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g¼ 0.84534 (F1) and 0.66972 (F2), and (3) two backward with g¼�0.18841 (B1)
and �0.4 (B2) (see Figure 2 in [42]). Trivic et al. [43] simulated similar problems
using the finite-volume method for angular discretization with 25� 25 control
volumes. Trivic and Amon [44] extended their 2-D study [43] to 3-D problem, with
the same set of scattering phase functions.

In the present study, the medium was purely scattering and all walls were black
and cold except the bottom wall at (x, y¼ 0) which had blackbody emissive power
Ebw. In addition, the dimensionless fluence rate G� was defined as G� ¼G=4Ebw

and the dimensionless radiative heat flux was defined as q� ¼ q=Ebw [42]. The simula-
tions were carried out using P-1 DG method on a grid consisting of 4,810 tetra-
hedron elements and using the finite-volume method for angular discretization
with Nh¼ 4 and N/¼ 60. Figures 4a and 4b show the dimensionless (a) heat flux
q� and (b) fluence rate G� predicted as a function of distance y along the centerline
x¼ 0.5m. The average and maximum relative errors between our numerical results
for the dimensionless heat flux q�(0.5, y) and those reported in [42, 43] were 3% and
4%, respectively. In addition, the average and maximum relative errors between our
numerical results for dimensionless fluence rate G�(0.5, y) and those reported in [42,
43] were 1% and 4%, respectively. Overall, the numerical predictions were in good
agreement with the data obtained from [42, 43] for all scattering phase functions
considered.

4.4. 3-D Radiative Transfer in Gray, Emitting, Absorbing, and
Scattering Media with Black and Reflecting Boundaries
Exposed to Diffuse Irradiation

This section compares our simulation results for the 3-D combustor shown in
Figure 5 with those provided in [45, 46]. The geometric feature of this problem was
quite complex and grid generation was challenging, as there were five thin baffles
located at a corner of the domain. A in-house grid-generation tool was used to gen-
erate an unstructured body-fitted grid. The medium was gray, emitting, absorbing,
and scattering, with the following temperature and absorption coefficient spatial
distributions:

j ¼ 0:20m�1;T ¼ 1; 600K for z � 5m
j ¼ 0:25m�1;T ¼ 2; 000K for 5 � z � 10m
j ¼ 0:20m�1;T ¼ 1; 600K for 10 � z � 20m
j ¼ 0:18m�1;T ¼ 1; 200K for 20 � z � 30m

8>><
>>:

ð29Þ

Temperature and emissivity of the boundary region located at x¼ 10m and 22m
�z� 30m were specified to be 1,200K and 1.0, respectively. The temperature and
emissivity at other boundaries, including at the baffle surfaces, were specified to be
800K and 0.65, respectively. Two cases with different uniform scattering albedos,
x¼ 0.0 and 0.5, were simulated. DOM with S8 angular discretization scheme and
P-3 DG method were employed. The grid consisted of 54,266 tetrahedral elements.
In [45, 46], 72,000 hexahedral elements were employed with a block-off-region
procedure to deal with the irregular geometric domain, i.e, nonorthogonal walls were
represented with a staircase grid.
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Figure 5 shows the net radiative heat flux on the front wall, side wall, and back
wall for (a) x¼ 0.0 and (b) x¼ 0.5 of the 3-D combustor. Discrepancies in flux con-
tour can be observed around the concave area compared with the solutions reported
in Figure 10 of [45] and Figure 9 of [46]. We believe that our simulation produces

Figure 4. (a) Dimensionless heat flux q�(0.5, y) and (b) fluence rate G�(0.5, y) along the y-axis for center of

x-axis in a 2-D enclosure containing purely scattering media with isotropic, strongly forward (F1 and F2),

and strongly backward (B1 and B2) scattering phase functions. Our results are compared with previously

reported studies [42, 43] obtained using finite-volume method and DOM. Here, q�(x, y)¼ q(x, y)=Ebw and

G�(x, y)¼G(x, y)=4Ebw (color figure available online).
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better results than that of [45, 46] in these areas since we employed a boundary-
conforming mesh, instead of block-out technique, on a Cartesian grid to represent
the nonorthogonal boundaries. As pointed out in [47], the block-off technique
introduced significant error in the computed heat flux on nonorthogonal walls.

4.5. 2-D Radiative Transfer in Gray Absorbing and Scattering Media
with Black Boundaries Exposed to Collimated Irradiation

This section discusses validation of our RTE solver for applications with col-
limated incident irradiation. Figure 6a shows the cylindrical enclosure of radius R

Figure 5. Geometry, dimension, and simulation results of the net radiative heat flux on the front, side, and

back walls of a 3-D combustor chamber [46] with absorbing, emitting, (a) nonscattering medium (x¼ 0.0)

and (b) scattering medium (x¼ 0.5). All dimensions are in meters (color figure available online).
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and heightH such thatR¼H¼ 1.0m. Normal collimated radiation (Ic¼ 1.0W=m2 sr)
was incoming from the top wall. The enclosure was filled with cold, gray, and homo-
geneous absorbing and isotropically scattering medium with optical radius sR¼ (j þ
rs)R¼ 1.0. The cylindrical side wall was cold and black (Es¼ 1.0, Ts¼ 0K). Jendoubi

Figure 6. Dimensionless radiative heat flux along (a) the bottom wall q�(r=R, 0) and (b) the sidewall of the

cylindrical enclosure q�(R, z=2H) with R¼H¼ 1m containing cold, absorbing, and isotropically scattering

medium exposed to collimated radiation incident from the top wall. Case 1 is such that Es¼ 1.0,

j¼ 0.0m�1, and rs¼ 1.0m�1. Case 2 is such that Es¼ 0.5, j¼ 0.3m�1, and rs¼ 0.7m�1 [48] (color figure

available online).
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et al. [48] studied two cases. Case 1 had bottom wall emissivity Es¼ 1.0 while the
medium absorption and scattering coefficients were j¼ 0.0m�1 and rs¼ 1.0m�1,
respectively. Case 2 had bottom wall emissivity Es¼ 0.5 and absorption and scattering
coefficients j¼ 0.3m�1 andrs¼ 0.7m�1, respectively.Angular discretization schemeT4

and P-3 DG method were employed. The grid consisted of 6,872 tetrahedral elements.
The dimensionless radiative heat flux was defined as q�(r, z)¼ q(r, z)=Eb, where Eb is
the blackbody emissive power, set at Eb¼ p. Figure 6 compares the numerical predic-
tions for the dimensionless radiative heat flux (a) at the bottom wall q�(r=H, z) and
along the cylinder side wall q�(z=2H, z) with those reported in [48] for Cases 1 and 2.
The average and maximum relative errors between them were 3% and 4%, respectively.
This demonstration that the DG method can also simulate collimated irradiation
problems.

5. SPEED-UP OF GPU VERSUS CPU

Let us consider a benchmark problem consisting of a 3-D square enclosure
2m� 2m� 2m having cold black walls and containing a gray, absorbing, emitting,
and nonscattering medium with the following spatial distributions of the blackbody
radiation intensity:

Ibðx; y; zÞ ¼
p
2j

sx cos
p
2
x

� �
1þ sin

p
2
y

� �h i
1þ sin

p
2
z

� �h i

þ p
2j

sy 1þ sin
p
2
x

� �h i
cos

p
2
y

� �
1þ sin

p
2
z

� �h i

þ p
2j

sz 1þ sin
p
2
x

� �h i
1þ sin

p
2
y

� �h i
cos

p
2
z

� �

þ 1þ sin
p
2
x

� �h i
1þ sin

p
2
y

� �h i
1þ sin

p
2
z

� �h i
ð30Þ

where the absorption coefficient was j¼ 0.1m�1 and a single angular direction,
ŝs ¼ ðsx; sy; szÞ ¼ ð0:62402; 0:52802; 0:57602Þ was considered. The temperature field
can be defined as Tðx; y; zÞ ¼ ½pIbðx; y; zÞ=r�1=4, where r(¼ 5.67� 10�8W=m2 �K4)
is the Stefan-Boltzmann constant. The RTE was solved using the DG method with
order ranging from P-1 to P-4 and with two different grids consisting of 2,861 and
22,655 tetrahedron elements. The CPU code was executed on a workstation with Intel
Xeon CPU E5620, 2.40GHz. The GPU code was executed on a NVIDIA1

GeForce1 GTX 480 card with OpenCL 1.0 CUDA 3.2.1. The computational time
for the solution along one radiative angular direction were used to calculate the
speed-up associated with using GPU computing. Figure 7 shows the speed-up of the
RTE solver in GPU mode versus CPU mode for a benchmark problem. The speed-up
was up to 4.0 and increased with increasing DG scheme order. Indeed, higher-order
DG requires more floating points and is better suited to GPU computing.

6. INTEGRATION OF RTE SOLVER WITH CFD DATA AND SOLVERS

The RTE solver can also be coupled with other physical solvers. Generally, the
grids employed by these solvers are different from that used by the RTE solver.
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Variables interpolation between different grids is therefore the primary challenge. In
this section, we present a case study of rocket plume radiation simulation using the
flow fields computed using a computational fluid dynamics solver described in [49].

6.1. CFD Simulation on Atlas II Rocket Plume

A very versatile 3-D flow solver was used for solving aerodynamics and
aerothermodynamics problems governed by the Euler or Reynolds-averaged
Navier-Stokes (RANS) equations [49–53]. The discretization was based on a total
variation diminishing (TVD) [54–56] formulation for the inviscid fluxes and
second-order central differencing for the viscous fluxes using a finite-volume frame-
work. The TVD formulation allowed the CFD solver to automatically handle flow
discontinuities without any additional dissipation operators [57]. The Menter
one-equation turbulence model [58] was used in the CFD solver. We accounted
for 9 gas species, H2, O2, H2O, OH, O, H, CO, CO2, and N2, and considered 12 reac-
tions steps. The CFD solver used a second-order Rusanov scheme with 25% of the
numerical dissipation added and standard minmod slope limiting with compression
factor 1.25 [49]. The CFD solver can be used for a wide variety of situations, includ-
ing (1) unsteady and steady flows, (2) low-speed, subsonic, transonic, supersonic, and
hypersonic flows, (3) perfect gas, equilibrium air curve-fit, frozen, equilibrium, and
finite-rate chemistry, (4) viscous and inviscid flows, (5) simple and complex geome-
tries, and (6) internal and external flows. Aeroheating may be modeled by a variety
of boundary conditions including (i) constant-temperature walls, (ii) variable-
temperature walls, (iii) radiative equilibrium walls, and (iv) catalytic walls.

Figure 7. Speed-up of GPU versus CPU implementations as a function of DG order for a 3-D radiative

transfer problem in gray, absorbing, emitting, and nonscattering medium at the prescribed temperature

field with j¼ 0.1m�1. Grid 1 and grid 2 consisted of 2,861 and 22,655 tetrahedron elements, respectively.
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The geometry of the Atlas II rocket for mesh generations was based on that
employed by Alexeenko et al. [6]. Due to the symmetry of the problem, a quarter
of the physical domain was discretized and the appropriate symmetric boundary
conditions were used. Different grids for CFD and the RTE solvers were generated,
as shown in Figures 8a and 8b. The CFD grid consisted of 2,849,552 hexahedron ele-
ments, whereas the RTE solver used a grid with 1,896,071 tetrahedron elements.
Flow and boundary conditions for the case of 40-km altitude presented in [6] were
adopted for the CFD solver. The finite rate chemistry employed by the CFD solver
can be found in [59].

6.2. Interpolation of Flow Fields

First, the CFD solver computed the flow, pressure, species, and temperature
fields. These field solutions were transferred to the RTE solver by interpolating
the hexahedron-based CFD grid to the tetrahedron-based RTE grid. To facilitate
the interpolation of flow field solutions from the CFD grid to the RTE grid, we con-
structed a kd-tree [60] consisting of all CFD grid vertices. The kd-tree data structure
has been widely employed for efficient nearest-neighbor search on points cloud [60].
The flow variables at any spatial location can be interpolated from the values of its
nearest-neighbor vertices of the CFD grid.

6.3. Radiative Computation of Plume Field

Alexeenko et al. [6] performed plume radiation signature calculations using (1)
the standard infrared radiation model (SIRRM) [61], (2) the standard plume

Figure 8. Grids consisting of (a) 2,849,552 hexahedron elements for the CFD solver, (b) 1,896,071

tetrahedron elements for the RTE solver, (c) interpolated pressure fields, and (d) interpolated temperature

fields (color figure available online).
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untraviolet code (SPURC) [62], and (3) the atmospheric radiative transfer code
(MODTRAN) [63] for atmospheric attenuation. A series of results on the infrared
spectral band at 4.667–4.802 mm was presented in [6]. In this study, we verified the
plume radiance calculation with the present RTE solver. Finite-volume angular
discretization with the resolution of 20� 9 for / and h were employed. The
hybrid SNBCK gas model of our RTE solver was used over a spectral region
2,100–2,250 cm�1, corresponding to 4.444–4.762 mm. We compared the radiation
intensity at this band with that of 4.667–4.802 mm in [6]. The narrow-band gas
model database with our RTE solver was for flow condition at 1 atm by default,
whereas the pressure of the plume field at 40-km altitude is fairly low [6]. Thus,
the absorption coefficient was scaled from the hybrid SNBCK gas model con-
dition with a ratio of P=Patm, in which the pressure field P was computed from
the CFD solver [64].

Figure 9b shows the calculated radiance in the 2,100–2,250 cm�1 band at the
observation angles of 90�and 81�for aspect angle u and roll angle h, respectively,
as defined in Figure 9a. The magnitude and pattern of the plume radiance are
qualitatively consistent with that presented in [6].

Figure 9. (a) Definition of aspect angle (u) and roll angle (h) of observation. (b) Computed plume radiance

[W=cm2�sr] in the spectral band of 4.444–4.762 mm at observing angles of u¼ 90o and h¼ 81o.
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6.4. Performance of Parallel CPU and GPU Computations

In this section, simulations of the Atlas II rocket plume were performed using
two RTE grids consisting of 1,896,071 and 181,213 tetrahedron elements. A series of
studies to check the scalability of the RTE solver with respect to parallel computing
was carried out. Simulations were performed on the CPU and GPU clusters of
Brown University Center for Computation & Visualization (CCV). The CPU cluster
consisted of 216 8-core nodes, and the GPU cluster consisted of 44 8-core nodes with
2 NVIDIA Tesla M2050 cards installed in each node. We recorded the computa-
tional time taken by each processor with our RTE solver in solving the Atlas II
rocket radiation transfer problem at a single angular direction and band quadrature.

CPU parallel solutions of the RTE were carried out using P-1 DG method with
a fine-grid mesh of 1,896,071 elements. Here, the number of nodes as well as the
number of cores of each node employed need to be specified. Table 1 lists the
CPU time for each processor for computation using 2, 4, and 8 cores for each node.
It demonstrated good speed-up with increasing number of processors. The speed-up
efficiency was around 95% and increased as the number of cores decreased. By com-
paring the CPU time in Table 1 for cases with the same total number of processors,
computations always ran faster when fewer cores were used in each node. This dis-
crepancy may be attributed to the memory bus saturation when more cores of each
node are involved in computations.

Parallel computations with CPU and GPU for solving RTE were performed
using the P-3 DG method for a coarse grid consisting of only 181,213 elements.
Based on our experience, the simulation results for the coarse grid with P-3 DG
method should be more accurate than those obtained with the P-1 DG method
and a finer grid (1,896,071 elements). Since each node of the Brown CCV GPU clus-
ter had only 2 NVIDIA Tesla cards, we used 2 processing units of each node in GPU
as well as CPU parallel computations for fair comparison. Table 2 summarizes the
computational time for each processor for the CPU and GPU computations. The
GPU computations demonstrated a consistent speed-up by a factor of 3 over the
CPU computations. The parallel scalability could not be sustained to the extent
observed in the fine-grid computations (Table 1). With smaller grid size, the compu-
tational tasks could not keep all the processors busy as the number of processors

Table 1. CPU times for each processor using the 2, 4, and 8 cores of each node required to

solve the RTE with P-1 DG scheme and a grid consisting of 1,896,071 tetrahedral elements

No. of cores No. of processors Node� core Time (s)

2 8 4� 2 78.72

16 8� 2 39.43

32 16� 2 19.32

4 16 4� 4 43.20

32 8� 4 21.28

64 16� 4 11.00

8 32 4� 8 26.47

64 8� 8 13.80

128 16� 8 6.95
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increased beyond a certain level. Comparing the CPU computational times in Table 2
with those in Table 1, the P-3 coarse-grid computations run faster than the corre-
sponding P-1 fine-grid cases. This comparison demonstrates, again, the advantage
of high-order numerical schemes.

7. CONCLUSION

This study presented a high-order discontinuous Galerkin (DG), combined
with finite-volume (FVM) and discrete-ordinates method (DOM) for solving the
RTE. The DG method was incorporated with nongray gas radiation models such
as spectral line–based weighted-sum-of-gray-gases (SLW) and hybrid SNBCK
model. Both diffusively and specularly reflecting walls were modeled along with dif-
fuse and collimated incident irradiation in 3-D enclosures. A case study in modeling
the radiance emitted by a rocket plume was presented. An important aspect of this
work is the porting of the DG RTE solver to GPUs, demonstrating very attractive
computational speed-up. Studies have revealed which computations benefit the most
from GPU acceleration. The CPU=GPU parallel high-order-accurate solver bears
the potential for high computational efficiency in large-scale RTE simulations with
extensive variations in optical thickness. Further improvements in hp-adaptive
solution procedures are currently being pursued.
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